Демонстрационный вариант

Работа состоит из двух частей, включающих в себя 8 заданий с развернутым ответом и задание на оценивание работ обучающихся.

На выполнение работы по математике отводится 120 минут.

При выполнении заданий 1-8 требуется записать полное решение и ответ.

При выполнении задания 9 необходимо изучить критерии оценивания заданий 17 и 18. Затем оценить выполнение указанных заданий обучающимся. Заполнить таблицу 1, проставив выставленный балл за выполнение задания обучающимся под соответствующим номером.

При выполнении заданий можно пользоваться черновиком. Записи в черновике не учитываются при оценивании работы.

Баллы, полученные Вами за выполнение заданий, суммируются.

Задание 1.

27 выпускников школы поступили в технические вузы. Они составляют 30% от числа выпускников. Сколько в школе выпускников?

Задание 2.

Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 60° , большее основание равно 12. Найдите радиус описанной окружности этой трапеции.

Задание 3.

В чемпионате по гимнастике участвуют 60 спортсменок: 16 из Чехии, 17 из Словакии, остальные из Австрии. Порядок, в котором выступают гимнастки определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Австрии.

Залание 4.

Моторная лодка в 10:00 вышла из пункта A в пункт B, расположенный в 30 км от A. Пробыв в пункте B 2 часа 30 минут, лодка отправилась назад и вернулась в пункт A в 18:00 того же дня. Определите (в км/ч) собственную скорость лодки, если известно, что скорость течения реки 1 км/ч.

Задание 5.

Найдите наибольшее значение функции $y=8\ln(x+7)-8x+3$ на отрезке [-6,5; 0].

Задание 6.

Дано уравнение $4\sin^4 2x + 3\cos 4x - 1 = 0$

- а) Решите уравнение
- б) Укажите корни этого уравнения, принадлежащие отрезку [п; 3п/2]

Залание 7.

В правильной пирамиде на ребрах AB и PD взяты точки M и K соответственно, причем AM:BM = 1:3, DK:PK = 4:3. PABCD

а) Докажите, что прямая ВР параллельна плоскости МСК.

б) Найдите площадь сечения пирамиды плоскостью МСК, если известно, что все ребра пирамиды равны 4.

Задание 8.

Дано трёхзначное натуральное число (число не может начинаться с нуля), не кратное 100.

- а) Может ли частное этого числа и суммы его цифр быть равным 90?
- б) Может ли частное этого числа и суммы его цифр быть равным 88?
- в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?

Залание 9.

Изучите критерии оценивания заданий ЕГЭ по математике (профильный уровень) 17 и 18. Оцените выполнение заданий 17 и 18 обучающимся.

- В июле 2016 года планируется взять кредит в банке на три года в размере S млн рублей, где S **целое** число. Условия его возврата таковы:
- каждый январь долг увеличивается на 25% по сравнению с концом предыдущего года;
- с февраля по июнь каждого года необходимо выплатить одним платежом часть долга;
- в июле каждого года долг должен составлять часть кредита в соответствии со следующей таблицей.

Месяц и год	Июль 2016	Июль 2017	Июль 2018	Июль 2019
Долг (в млн рублей)	S	0,75	0,45	0

Найдите наибольшее значение S, при котором каждая из выплат будет меньше 3 млн рублей.

Решение

Долг перед банком (в млн рублей) на июль каждого года должен уменьшаться до нуля следующим образом:

$$S$$
; 0,7 S ; 0,4 S ; 0.

По условию, в январе каждого года долг увеличивается на 25%, значит, долг в январе каждого года равен:

Следовательно, выплаты с февраля по июнь каждого года составляют:

$$0,55S$$
; $0,475S$; $0,5S$.

Наибольшая из выплат должна быть меньше 3 млн рублей:

$$0,55S < 3; S < 5\frac{5}{11}$$

Наибольшее целое решение этого неравенства — число 5. Значит, искомый размер кредита — 5 млн рублей.

Ответ: 5.

Содержание критерия		
Обоснованно получен верный ответ	3	
Верно построена математическая модель, решение сведено к иссле-		
дованию этой модели и получен результат: — неверный ответ из-за вычислительной ошибки;		
Верно построена математическая модель, решение сведено к иссле-	1	
дованию этой модели, при этом решение может быть не завершено		
Решение не соответствует ни одному из критериев, перечисленных	0	
выше	0	
Максимальный балл	3	

Найдите все значения a, при каждом из которых уравнение

$$\sqrt{x^4 - x^2 + a^2} = x^2 + x - a$$
 имеет ровно три различных корня.

Решение.

Исходное уравнение равносильно уравнению $x^4 - x^2 + a^2 = (x^2 + x - a)^2$ при условии $x^2 + x - a \ge 0$.

Решим уравнение $x^4 - x^2 + a^2 = (x^2 + x - a)^2$; ; $x^3 + (1-a)x^2 - ax = 0$; x(x+1)(x-a) = 0, откуда x = 0, x = -1 или x = a.

Исходное уравнение имеет три корня, когда эти числа различны и для каждого из них выполнено условие $x^2 + x - a \ge 0$.

Рассмотрим условия совпадения корней. При a = 0 и a = -1 уравнение имеет не более двух различных корней. При остальных значениях a числа 0, -1, a различны.

При x = 0 получаем: $x^2 + x - a = -a$.

Это выражение неотрицательно при $a \le 0$.

При x = -1 получаем: $x^2 + x - a = -a$.

Это выражение неотрицательно при $a \le 0$.

При x = a получаем: $x^2 + x - a = a^2 \ge 0$ при всех значениях a.

Таким образом, исходное уравнение имеет ровно три различных корня при a < -1; -1 < a < 0.

Ответ: a < -1; -1 < a < 0.

Содержание критерия	Баллы
Обоснованно получен верный ответ	4
С помощью верного рассуждения получено множество значений a , отличающееся от искомого включением только одной точки $a=0$ или $a=-1$	3
С помощью верного рассуждения получен промежуток $(-\infty; 0]$ множества значений a	2
Получены корни уравнения $x^4-x^2+a^2=\left(x^2+x-a\right)^2$: $x=0$, $x=-1$, $x=a$; и задача верно сведена к исследованию полученных корней при условии $x^2+x-a>0$ $\left(x^2+x-a\geq 0\right)$ ИЛИ получен неверный ответ из-за вычислительной ошибки, но при этом верно выполнены все шаги решения	1
Решение не соответствует ни одному из критериев, перечисленных выше	0
Максимальный балл	4

18.
$$\sqrt{X^{4}-X^{2}+\alpha^{2}} = X^{2}+X-\alpha|^{2}$$
 $X^{4}-X^{2}+\alpha^{2}=X^{4}+2X^{3}+X^{2}-2\alpha X^{2}-2\alpha X+\alpha^{2}$
 $2X^{3}+2X^{2}-2\alpha X^{2}-2\alpha X=0$
 $X(X^{2}+2X-2\alpha X-2\alpha)=0$
 $X^{2}+2X-2\alpha X-2\alpha=0$
 $X^{2}+2X-2\alpha X-2\alpha=0$
 $X^{2}+X(2-2\alpha)-2\alpha=0$
 $X^{2}+X^{2}+2\alpha=0$
 $X^{2}+X^{2}+2$

Межпредметная задача

Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 20 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?